LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2023

PCH2ME02 - SURFACE CHEMISTRY AND CATALYSIS

	Date: 10-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM	Max. : 100 Marks			
	SECTION A V1 (CO1)				
SECTION A – K1 (CO1)					
	Answer ALL the questions	$(5 \times 1 = 5)$			
1.	Answer the following				
a)	What is Fetizon's reagent?				
b)	Which type of adsorption isotherms explain the behaviour of capillary condensation of gas?				
c)	Write the chemical structure of one of the hydrophilic groups for amphoteric amphiphiles.				
<u>d)</u>	Define degrees of inhibition.				
e)	Write de Boer equation.				
	SECTION A – K2 (CO1)				
	Answer ALL the questions	$(5 \times 1 = 5)$			
2.	Fill in the blanks				
a)	In a homogeneous catalytic reaction, 1.0 M of a substrate in the presence of	-			
	yields 1.0 mM of a product in 10 s. The turnover frequency of the reaction i				
b)	Adsorption is invariably accompanied by in enthalpy of the	he system.			
c)	Micellar colloids represent equilibria.				
d)	is a measure of catalytic efficiency.				
e)	Mesopore size calculations are made assuming cylindrical pore geometry using the				
	equation.				
SECTION B – K3 (CO2)					
	Answer any THREE of the following	$(3 \times 10 = 30)$			
3.	How are kinetic theories used to interpret catalysis thermodynamically?	(10 Marks)			
4.	Derive Brunauer – Emmett – Teller equation.	(10 Marks)			
5.	Explain the theories used in identifying the type of an emulsion.	(10 Marks)			
6.	a) Discuss the mechanism of photoelectrolysis of water using TiO ₂ . (5 Marks)				
	b) Hexokinase catalyzes the reaction of D-glucose to D-glucose 6-phosphate. Under the conditions of				
	pH 7 at 25°C and a hexokinase concentration of 3.0 nmol/mL, the K _M for Hexokinase for the substrate glucose was determined to be 3.0 x 10 ⁻⁴ M. When the glucose concentration was set to 160				
	μ M, the initial rate of the reaction was found to be 65.0 μ mol/(mL.s). Ca				
		nese conditions.			
	(5 Marks)				
7.	How is pore size distribution calculated using Barrett-Joyner-Halenda?	(10 Marks)			
SECTION C – K4 (CO3)					
	Answer any TWO of the following	$(2 \times 12.5 = 25)$			
8.	a) Discuss the general catalytic mechanism involving Arrhenius intermed	iate. (9			
	Marks)				
	b) The noncatalytic reaction occurs at 500 °C and has an activation energy of 50 kJ/mol. By using a				

	catalyst, the activation energy can be reduced to 35 kJ/mol. What is the difference in	the reaction rate		
	at this temperature?	(3.5 Marks)		
9.	a) Explain the role of heterogeneous catalysts on the mechanism of Fischer-Tro	psch process. (6		
	Marks)			
	b) How are temperature and nature of the adsorbent influence the adsorption?	(6.5 Marks)		
10.	a) Mention the significances of Hydrophilic – Lipophilic Balance of a surfactants.	(4 Marks)		
	b) Explain the desirable properties of emulsifying agents.	(8.5 Marks)		
11.	a) Account for the importance of TiO2 in degradation of dyes and isomerizatio	n reactions. (7.5		
	Marks)			
	b) Explain the kinetics of noncompetitive enzyme inhibition.	(5 Marks)		
	SECTION D – K5 (CO4)			
	Answer any ONE of the following	$(1 \times 15 = 15)$		
12.	a) Derive the Bronsted equations from Hammett equation.	(8 Marks)		
	b) Differentiate chemisorption from physisorption. The time for which the oxygen atom remains			
	adsorbed on a tungsten surface is 0.36 s at 2550 K and 3.49 s at 2360 K. Calculate the activation			
	energy of desorption of oxygen atom and assume that the oxygen atom is tightly cher	nisorbed.		
	Calculate the pre-exponential factor τ_0 in the Arrhenius expression.	(7 Marks)		
13.	a) How are mesoporous materials synthesized using liquid crystal template (LCT) me	echanism?		
		(8 Marks)		
	b) How is the specific surface area of solid adsorbents determined? Write the signific	ance of BET		
	constant.	(7 Marks)		
	SECTION E – K6 (CO5)			
	Answer any ONE of the following	$(1 \times 20 = 20)$		
14.	a) Derive the equation of Hammett acidity function.	(5 Marks)		
	b) For a weak base, 2-nitroaniline B, in 0.02 M HClO ₄ , the ratio of [BH ⁺] to [B] is found to be 0.01			
	Calculate i) the pK _{BH} + for the 2-nitroanilinium ion and ii) the ratio of [BH ⁺] to [B]			
	using the same indicator.	(5 Marks)		
	c) Derive thermodynamically Gibb's adsorption isotherm for the adsorption of a solute on the surface			
	•	Marks)		
15.	a) Differentiate elastic gels from inelastic gels.	(5 Marks)		
	b) Compare reversible and irreversible enzyme inhibition.	(5 Marks)		
	c) Discuss the principle of XPS. How is an XPS spectrum analyzed?	(10 Marks)		

\$\$\$\$\$\$\$